Transitive Actions of Compact Groups and Topological Dimension
نویسندگان
چکیده
منابع مشابه
Some Topological Aspects of Proper Group Actions; Non-compact Dimension of Groups
Let G be a Lie group and let X be a space. It is believed that G and X are strongly related if there is a proper action of G on X, especially if the orbit space G\X is compact. The paper makes explicit one such relation, namely non-compact dimension. For a field k and a locally compact space X we call nc(X ; k) = inf {/: H'C(X ;k) ^ 0} the non-compact dimension of X (see §2). Let us fix a field...
متن کاملHighly arc transitive digraphs: reachability, topological groups
Let D be a locally finite, connected, 1-arc transitive digraph. It is shown that the reachability relation is not universal in D provided that the stabilizer of an edge satisfies certain conditions which seem to be typical for highly arc transitive digraphs. As an implication, the reachability relation cannot be universal in highly arc transitive digraphs with prime inor out-degree. Two differe...
متن کاملFree Topological Groups and the Projective Dimension of a Locally Compact Abelian Group
It is shown that a free topological group on a k.space is a k.-space. Using this it is proved that if X is a k.-group then it is a quotient of a free topological group by a free topological group. A corollary to this is that the projective dimension of any k.-group, relative to the class of all continuous epimorphisms admitting sections, is either zero or one. In particular the projective dimen...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولHomogeneous Spaces and Transitive Actions by Polish Groups
We prove that for every homogeneous and strongly locally homogeneous Polish space X there is a Polish group admitting a transitive action on X. We also construct an example of a homogeneous Polish space which is not a coset space and on which no separable metrizable topological group acts transitively.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2000
ISSN: 0021-8693
DOI: 10.1006/jabr.2000.8543